STRUCTURE OF SODIUM HYDROGEN SELENITE-SELENIOUS ACID ADDUCT (1 : 3), NaHSeO₃. 3 H₂SeO₃

Josef LOUB^a, Zdenčk MIČKA^a, Jana PODLAHOVÁ^a, Karel MALÝ^b and Jürgen KOPF^c

^a Department of Inorganic Chemistry,

Charles University, 128 40 Prague 2, Czechoslovakia

^b Institute of Physics,

Czechoslovak Academy of Sciences, 180 40 Prague 8, Czechoslovakia

^cDepartment of Inorganic and Applied Chemistry,

University of Hamburg, W-2000 Hamburg 13, Germany

Received January 7, 1992 Accepted February 14, 1992

Structure of sodium hydrogen selenite-selenious acid (1:3) was solved by heavy-atom method and refined anisotropically to R = 0.098 for 1 223 unique observed reflections. The title compound crystallizes in the *Pc* space group with a = 5.756(2), b = 4.911(2), c = 20.010(5) Å, $\beta = 100.48(3)^{\circ}$, V = 556(1) Å³, T = 293 K, (a = 5.763(2), b = 4.878(1), c = 20.03(1) Å, $\beta = 100.48(3)^{\circ}$, V = 554(1) Å³, T = 173 K), Z = 2. The structure consist of HSeO₃ anions, molecules of selenious acid and Na⁺ cations which are octahedrally coordinated with oxygen atoms. The structure is stabilized by a system of hydrogen bonds.

This paper is a continuation of the systematic study of the crystalline products with the general formulae MHSeO₃ . n H₂SeO₃ or MH_{2n+1}(SeO₃)_{n+1}, where n = 0 - 3, formed in the M⁺-H₂SeO₃-H₂O systems (M alkali metal or ammonium: LiHSeO₃ (ref.¹), NaHSeO₃ (ref.²), KHSeO₃ (ref.³), RbHSeO₃ (ref.⁴), CsHSeO₃ (ref.⁵), LiH₃(SeO₃)₂ (ref.⁶), NaH₃(SeO₃)₂ (ref.⁷), KH₃(SeO₃)₂ (refs^{8,9}), RbH₃(SeO₃)₂ (ref.¹⁰), CsH₃(SeO₃)₂ (ref.¹¹), NH₄H₃(SeO₃)₂ (ref.¹²), CsH₅(SeO₃)₃ (ref.¹³)). These compounds constitute a group of materials with ferroelectric and ferroelastic properties. The title compound was already prepared and formulated as Na₂SeO₃ . 7 H₂SeO₃ (ref.¹⁴).

EXPERIMENTAL

The material studied was obtained from the mixture of Na_2SeO_3 , H_2SeO_3 and H_2O (ref.¹⁵) as pale-rosy, slightly hygroscopic crystals stable in air and to X-rays, but very unstable towards chemical reduction. Therefore the measured crystal was sealed in the Lindemann capillary tube. Density was determined pycnometrically under xylene at 293 K.

Crystal Structure Determination

Monoclinic, space group Pc, $D_0 = 3.19(1)$, $D_x = 3.211(1)$ g cm⁻³, μ (MoK α) = 14.29 mm⁻¹, F(000) = 500, $M_r = 537.9$.

Collect. Czech. Chem. Commun. (Vol. 57) (1992)

The structure was solved by the heavy-atom method, H atoms were not localized. The values of F magnitudes were refined in the full-matrix least-squares refinement including positional and anisotropic displacement parameters. Application of an absorption increased the *R*-factor final value and therefore was neglected. Atomic scattering factors and corrections for anomalous dispersion were those from ref.¹⁶. Data collection and structure refinement parameters are summarized in Table I^{*}.

Table I

Data	collection	and	structure	retinement	parameters	

Parameter	Data
Crystal dimensions	$0.1 \times 0.2 \times 0.2 \text{ mm}$
Diffractometer and radiation used	automatic Hilger –Watts four-circle diffractometer, MoK α radiation ($\lambda = 0.7173$ Å)
Scan technique	ω – 2 θ
No. and 2 θ range of reflections for lattice parameter refinement	14, 16 → 38°
Range of h, k and l	$0 \rightarrow 6, 0 \rightarrow 6, -24 \rightarrow 24$
Standard reflections and their intensity fluctuation	3 after every 30 reflections, no intensity variation
Total number of reflections measured; 2 θ range	1 223, 0 → 128°
No. of observed reflections	1 119
Criterion for observed reflections	$I > 1.96 \sigma(I)$
Function minimized	$\Sigma w (F_{o} - F_{o})^2$
Weighting scheme	$w = [\sigma^2(F_{\rm o}) + 0.0009F_{\rm o}^2]^{-1}$
Parameters refined	153
Values of R, wR and S	0.098, 0.108, 2.5
Ratio of maximal and average LS shift to e.s.d.(Δ / σ)	0.18 for $\beta(3,3)$ of O(12) and 0.04
Maximal and minimal heights in final Δρ map	3.8 and $-5.6 \text{ e} \text{ Å}^{-3}$ (0.81 and 0.84 Å away from the Se1 and Se3 atom)
Program used	SDS System (ref. ¹⁷)
Computer used	Siemens 7536

* Tables of structure factors and anisotropic thermal parameters of non-H atoms are available from the autors on request.

DISCUSSION

The final atomic coordinates and equivalent isotropic displacement factors of non-H atoms are given in Table II. Selected interatomic distances and angles are listed in Table III. The structure is shown in Fig. 1.

Initial attempt to solve the structure was unsuccessfull¹⁵, even one using the lowtemperature data (T = 173 K), which had yielded only unit-cell dimensions. Although the crystals appeared in the polarization microscope as good single crystals with pretty developed faces the analysis of the previous investigations revealed additional maxima in the scan profiles for certain set of reflections and thus suggested possibility of the twinning. This was confirmed during preliminary preparation of the measurement on the Hilger–Watts diffractometer and twin matrix was determined as

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ -1.26 & 0 & -1 \end{bmatrix}$$

TABLE II

Atomic coordinates (10^3) and equivalent isotropic displacement factors of non-H atoms, with e.s.d.'s in parentheses

Atom	x	у	z	B_{eq} , Å ²
Se1	521.4	445.8(6)	445.9	0.8(1)
Se2	57.9(6)	940.8(7)	525.1(2)	1.0(1)
Se3	397.6(7)	179.4(7)	266.2(2)	1.1(1)
Se4	813.9(7)	633.8(7)	174.0(2)	1.1(1)
Na	934(2)	795(3)	350(1)	1.6(3)
011	347(4)	608(6)	376(1)	1.8(6)
012	790(4)	521(5)	430(1)	1.2(5)
013	488(4)	656(5)	507(1)	1.1(5)
O21	-212(4)	1059(5)	541(1)	1.3(5)
022	56(4)	1104(5)	448(1)	1.1(5)
O23	223(4)	1138(5)	577(1)	1.6(6)
O31	119(4)	91(5)	280(1)	2.0(6)
O32	420(5)	-72(7)	208(1)	2.7(8)
033	559(4)	35(5)	332(1)	1.5(6)
O41	1034(4)	460(6)	142(1)	1.8(6)
042	584(4)	417(5)	139(1)	1.9(6)
043	848(4)	515(6)	251(1)	1.6(5)

Beg	=	[B22	+	(B ₁₁	÷	B33	+	2 B13	cos	β)	1	sin ²	βÌ	1	3
-----	---	------	---	------------------	---	-----	---	-------	-----	----	---	------------------	----	---	---

2312

TABLE III

Interatomic distances (Å) and angles (°); d and a denote donor and acceptor atoms. Symmetry code: (i) 1 + x, 1 + y, z; (ii) x, 1 + y, z; (iii) 1 + x, y, z; (iv) x - 1, y, z; (v) x - 1, y + 1, z; (vi) x, 1 - y, z - 0.5; (vii) 1 + x, 2 - y, z - 0.5

Atoms		Distance		Atoms	А	Angle		
Sel-	Se1-011		1.76(2)		2	99(1)		
Se1-	-012	1.67(2)		011-Se1-01	3 1	00(1)		
Sel-	-013	1.64(2)		012-Se1-01	3 1	04(1)		
Se2-	-021	1.74(2)		021-Se2-02	2	98(1)		
Se2-	Se2-022			021-Se2-02	3	97(1)		
Se2-	-023	1.60(2)		022-Se2-02	.3 1	102(1)		
Sc3-	-031	1.73(2)		031-Se3-03	2	97(1)		
Se3-	Se3-032			031-Se3-03	3 1	100(1)		
Se3-	-033	1.63(2)		032-Se3-03	3	98(1)		
Se4-	Se4-041			041-Se4-04	2	96(1)		
Se4-	-042	1.74(2)		041-Se4-043		102(1)		
Se4-	Se4-043		1.63(2)		3	97(1)		
Na…	Na…012		2.35(3)		l ⁱ 1	173(1)		
Na…	·O43	2.39(3)		022 ⁱⁱⁱ -Na-043		174(1)		
Na…	•031 ⁱ	2.40(3)		011 ⁱⁱⁱ -Na+0	33 ⁱⁱ 1	72(1)		
Na	·033 ⁱⁱ	2.43(3)		012-Na-022 ⁱⁱⁱ		34(1)		
Na…	·O22 ⁱⁱⁱ	2.48(3)		043-Na-033 ⁱⁱ		96(1)		
Na…	Na…O11 ⁱⁱⁱ		2.51(3)		1 ⁱⁱⁱ i	81(1)		
Sed	Oq	O *	Seª	O ^d …O ^a	Se ^d -O ^d -O ^a	O ^d -O ^a -Se ^a		
Se1	011	O33 ⁱⁱ	Se3 ⁱⁱ	2.66(3)	113(3)	112(3)		
Se2	O21	013 ^{iv}	Se1 ^{iv}	2.63(3)	105(3)	120(3)		
Se2	022	012 ^v	Se1 ^v	2.54(3)	114(3)	110(3)		
Se3	O31	043 ^{iv}	Se4 ^{iv}	2.60(3)	107(3)	118(3)		
Se3	032	023 ^{vi}	Se2 ^{vi}	2.68(3)	133(3)	131(3)		
Se4	O41	023 ^{vii}	Se2 ^{vii}	2.70(3)	102(3)	121(3)		
Se4	O42	013 ^{vi}	Se1 ^{vi}	2.62(3)	120(3)	129(3)		

The twinning ratio differed for different specimens. For intensity data collection the crystal was chosen which did not show splitting in the reflection profiles. However the quality of the measured crystal was not fully satisfying as it is proved by the results of the structure refinement (higher reliability factors and high residuals in the difference electron density map), nevertheless the structure was determined with accuracy which made possible to discuss the crystal geometry.

Because the H-atom positions were not localized in the structure, the HSeO₃ and H_2SeO_3 formations were distinguished on the basis of the SeO₃ geometry. The most profound differentiating criterion between Se-O(H) and Se-O bonding consist in the Se-O distance which averages to 1.74(1) Å (n = 7) for Se-O(H) and 1.63(2) Å (n = 5) for Se-O (with e.s.d.'s of arithmetic means in parentheses). These values are similar to those reported in refs^{1 - 13,18 - 20}. The oxygen atoms arrangement around Se1 atom differs from that around Se2, 3 and 4, see Table III. Also the distance Se1 from the O11, O12, O13 oxygen atoms plane differs significantly from the distances Se2,3,4 to the O2,3,4 atoms planes (1: 0.761(3), 2: 0.805(3), 3: 0.829(3), 4: 0.833(3) Å). The Na atoms are octahedrally coordinated by O and O(H) atoms of all selenites with the average Na-O distance of 2.43(5) Å and the average O-Na-O cis-angle of 90(6)°. The next Na-O distances are greater then 3.5 Å. All H atoms are involved in hydrogen bonding characterized by the average distance and angles O^d...O^a, Se^d-O^d-O^a and O^d-O^a-Se^a of 2.63(5) Å, 113(10) and 120(7)° (n = 7).

Fig. 1

A view of the part of the structure along b axis with atom numbering. The coordination bonds are indicated by thick dashed lines, the hydrogen bonds by thin dashed lines

REFERENCES

- 1. Chomnilpan S., Liminga R.: Acta Crystallogr., B 35, 3011 (1979).
- 2. Chomnilpan S., Liminga R., Sonneveld E. J., Visser J. W.: Acta Crystallogr., B 37, 2217 (1981).
- Sarin V. A., Bydanov N. N., Vinogradova I. S., Rider E. E., Solovev S. P.: Kristallografiya 29, 243 (1984).
- Bannova O. I., Vinogradova I. S., Kuzmin A. M., Rozhdestvenskaya I. V., Usov O. A.: Kristallografiya 32, 83 (1987).
- 5. Mička Z., Daněk M., Loub J., Strauch B., Podlahová J., Hašek J.: J. Solid Stat. Chem. 77, 306 (1988).
- 6. Chomnilpan S., Liminga R., Tellgren R.: J. Appl. Crystallogr. 13, 176 (1980).
- 7. Chomnilpan S., Tellgren R., Liminga R.: Acta Crystallogr., B 33, 2108 (1977).
- 8. Gorbatyi L. V., Ponomarev V. I., Kheiker D. M.: Kristallografiya 16, 899 (1971).
- 9. Lehmann M. S., Larsen F. K.: Acta Chem. Scand. 25, 3859 (1971).
- 10. Grimm H., Fitzgerald W. J.: Acta Crystallogr., A 34, 268 (1978).
- 11. Chomnilpan S., Tellgren R., Liminga R.: Acta Crystallogr., B 34, 373 (1978).
- 12. Tellgren R., Liminga R.: Acta Crystallogr., B 30, 2497 (1974).
- 13. Hiltunen L., Hölsä J., Mička Z.: J. Solid Stat. Chem. 68, 307 (1987).
- 14. Sabbah R., Périnet G.: J. Chim. Phys. 62, 929 (1965).
- 15. Mička Z., Kratochvíl B., Podlahová J., Niinistö L.: Collect. Czech. Chem. Commun. 50, 1368 (1985).
- 16. International Tables for X-Ray Crystallography, Vol. IV. Kynoch Press, Birmingham 1974.
- Petříček V., Malý K.: The SDS System. A Program Package for X-Ray Structure Determination. Institute of Physics, Czechoslovak Academy of Sciences, Prague 1988.
- 18. Larsen F. K., Lehmann M. S., Sotofte I.: Acta Chem. Scand. 25, 1233 (1971).
- 19. Rider E. E., Sarin V. A., Bydanov N. N., Vinogradova I. S.: Krystallografiya 31, 264 (1986).
- 20. Baran J., Lis T., Marchewka M., Ratajczak H.: J. Mol. Struct. 250, 13 (1991).

Translated by the author (J. L.).